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THE GENESIS OF DOUBLE STARS

BY SIR GEORGE DARWIN, K.C.B., F.R.S.

Plumian Professor of Astronomy and Experimental Philosophy in the
University of Cambridge.

IN ordinary speech a system of any sort is said to be stable when
it cannot be upset easily, but the meaning attached to the word is
usually somewhat vague. It is hardly surprising that this should be
the case, when it is only within the last thirty years, and principally
through the investigations of M. Poincare", that the conception of
stability has, even for physicists, assumed a definiteness and clearness
in which it was previously lacking. The laws which govern stability
hold good in regions of the greatest diversity ; they apply to the
motion of planets round the sun, to the internal arrangement of those
minute corpuscles of which each chemical atom is constructed, and to
the forms of celestial bodies. In the present essay I shall attempt to
consider the laws of stability as relating to the last case, and shall
discuss the succession of shapes which may be assumed by celestial
bodies in the course of their evolution. I believe further that homo-
logous conceptions are applicable in the consideration of the trans-
mutations of the various forms of animal and of vegetable life and in
other regions of thought. Even if some of my readers should think that
what I shall say on this head is fanciful, yet at least the exposition will
serve to illustrate the meaning to be attached to the laws of stability
in the physical universe.

I propose, therefore, to begin this essay by a sketch of the
principles of stability as they are now formulated by physicists.

I.

If a slight impulse be imparted to a system in equilibrium one of
two consequences must ensue ; either small oscillations of the system
will be started, or the disturbance will increase without limit and the
arrangement of the system will be completely changed. Thus a stick
may be in equilibrium either when it hangs from a peg or when it is
balanced on its point. If in the first case the stick is touched it will
swing to and fro, but in the second case it will topple over. The first
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544 The Genesis of Double Stars

position is a stable one, the second is unstable. But this case is too
simple to illustrate all that is implied by stability, and we must
consider cases of stable and of unstable motion. Imagine a satellite
and its planet, and consider each of them to be of indefinitely small
size, in fact particles ; then the satellite revolves round its planet in
an ellipse. A small disturbance imparted to the satellite will only
change the ellipse to a small amount, and so the motion is said to be
stable. If, on the other hand, the disturbance were to make the
satellite depart from its initial elliptic orbit in ever widening circuits,
the motion would be unstable. This case affords an example of stable
motion, but I have adduced it principally with the object of illustrating
another point not immediately connected with stability, but important
to a proper comprehension of the theory of stability.

The motion of a satellite about its planet is one of revolution or
rotation. When the satellite moves in an ellipse of any given degree
of eccentricity, there is a certain amount of rotation in the system,
technically called rotational momentum, and it is always the same at
every part of the orbit1.

Now if we consider all the possible elliptic orbits of a satellite
about its planet which have the same amount of "rotational
momentum," we find that the major axis of the ellipse described will
be different according to the amount of flattening (or the eccentricity)
of the ellipse described. Fig. 1 illustrates for a given planet and
satellite all such orbits with constant rotational momentum, and with
all the major axes in the same direction. It will be observed that
there is a continuous transformation from one orbit to the next, and
that the whole forms a consecutive group, called by mathematicians
"a family" of orbits. In this case the rotational momentum is
constant and the position of any orbit in the family is determined by
the length of the major axis of the ellipse ; the classification is
according to the major axis, but it might have been made according
to anything else which would cause the orbit to be exactly deter-
minate.

I shall come later to the classification of all possible forms of
ideal liquid stars, which have the same amount of rotational momentum,
and the classification will then be made according to their densities,
but the idea of orderly arrangement in a "family " is just the same.

We thus arrive at the conception of a definite type of motion,
with a constant amount of rotational momentum, and a classification
of all members of the family, formed by all possible motions of that
type, according to the value of some measurable quantity (this will

1 Moment of momentum or rotational momentum is measured by the momentum of
the satellite multiplied by the perpendicular from the planet on to the direction of
the path of the satellite at any instant.
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Classification of modes of motion in "families" 545

hereafter be density) which determines the motion exactly. In the
particular case of the elliptic motion used for illustration the motion
was stable, but other cases of motion might be adduced in which the
motion would be unstable, and it would be found that classification
in a family and specification by some measurable quantity would be
equally applicable.

A complex mechanical system may be capable of motion in several
distinct modes or types, and the motions corresponding to each such
type may be arranged as before in families. For the sake of simpli-
city I will suppose that only two types are possible, so that there will

Fig. 1.

A "family" of elliptic orbits with constant rotational momentum.

only be two families ; and the rotational momentum is to be constant
The two types of motion will have certain features in common which
we denote in a sort of shorthand by the letter A. Similarly the two
types may be described as A + a and A + b, so that a and b denote
the specific differences which discriminate the families from one
another. Now following in imagination the family of the type A + a,
let us begin with the case where the specific difference a is well
marked. As we cast our eyes along the series forming the family, we
find the difference a becoming less conspicuous. It gradually dwindles
until it disappears; beyond this point it either becomes reversed, or
else the type has ceased to be a possible one. In our shorthand we

D. 35
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546 The Genesis of Double Stars

have started with A+a, and have watched the characteristic a
dwindling to zero. When it vanishes we have reached a type which
may be specified as A ; beyond this point the type would be A — a or
would be impossible.

Following the A + b type in the same way, b is at first well marked,
it dwindles to zero, and finally may become negative. Hence in short-
hand this second family may be described as A + b,... A,... A—b.

In each family there is one single member which is indistinguish-
able from a member of the other family; it is called by Poincare" a
form of bifurcation. It is this conception of a form of bifurcation
which forms the important consideration in problems dealing with the
forms of liquid or gaseous bodies in rotation.

But to return to the general question,—thus far the stability of
these families has not been considered, and it is the stability which
renders this way of looking at the matter so valuable. It may be
proved that if before the point of bifurcation the type A + a was
stable, then A+b must have been unstable. Further as a and b each
diminish A + a becomes less pronouncedly stable, and A+b less
unstable. On reaching the point of bifurcation A+a has just ceased
to be stable, or what amounts to the same thing is just becoming
unstable, and the converse is true of the A+b family. After passing
the point of bifurcation A + a has become definitely unstable and
A+b has become stable. Hence the point of bifurcation is also a
point of " exchange of stabilities between the two types1."

In nature it is of course only the stable types of motion which can
persist for more than a short time. Thus the task of the physical
evolutionist is to determine the forms of bifurcation, at which he
must, as it were, change carriages in the evolutionary journey so as
always to follow the stable route. He must besides be able to
indicate some natural process which shall correspond in effect to the
ideal arrangement of the several types of motion in families with
gradually changing specific differences. Although, as we shall see
hereafter, it may frequently or even generally be impossible to specify
with exactness the forms of bifurcation in the process of evolution,
yet the conception is one of fundamental importance.

The ideas involved in this sketch are no doubt somewhat recondite,
but I hope to render them clearer to the non-mathematical reader by

1 In order not to complicate unnecessarily this explanation of a general principle I have
not stated fully all the cases that may occur. Thus : firstly, after bifurcation A + a may
be an impossible type and A+a will then stop at this point; or secondly, A + b may
have been an impossible type before bifurcation, and will only begin to be a real one
after it; or thirdly, both A + a and A + b may be impossible after the point of bifurcation,
in which case they coalesce and disappear. This last case shows that types arise and
disappear in pairs, and that on appearance or before disappearance one must be stable
and the other unstable.
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Illustrations of exchanges of stability

homologous considerations in other fields of thought1, and I shall pass
on thence to illustrations which will teach us something of the
evolution of stellar systems.

States or governments are organised schemes of action amongst
groups of men, and they belong to various types to which generic
names, such as autocracy, aristocracy or democracy, are somewhat
loosely applied. A definite type of government corresponds to one of
our types of motion, and while retaining its type it undergoes a slow
change as the civilisation and character of the people change, and as
the relationship of the nation to other nations changes. In the
language used before, the government belongs to a family, and as
time advances we proceed through the successive members of the
family. A government possesses a certain degree of stability—hardly
measurable in numbers however—to resist disintegrating influences
such as may arise from wars, famines, and internal dissensions. This
stability gradually rises to a maximum and gradually declines. The
degree of stability at any epoch will depend on the fitness of some
leading feature of the government to suit the slowly altering circum-
stances, and that feature corresponds to the characteristic denoted by
a in the physical problem. A time at length arrives when the
stability vanishes, and the slightest shock will overturn the govern-
ment. At this stage we have reached the crisis of a point of
bifurcation, and there will then be some circumstance, apparently
quite insignificant and almost unnoticed, which is such as to prevent
the occurrence of anarchy. This circumstance or condition is what
we typified as b. Insignificant although it may seem, it has started
the government on a new career of stability by imparting to it a new
type. It grows in importance, the form of government becomes
obviously different, and its stability increases. Then in its turn this
newly acquired stability declines, and we pass on to a new crisis or
revolution. There is thus a series of " points of bifurcation" in
history at which the continuity of political history is maintained by
means of changes in the type of government. These ideas seem, to
me at least, to give a true account of the history of states, and I
contend that it is no mere fanciful analogy but a true homology,
when in both realms of thought—the physical and the political—we
perceive the existence of forms of bifurcation and of exchanges of
stability.

1 I considered this subject in my Presidential address to the British Association in
1905, Report of the 15th Meeting of the British Assoc. (S. Africa, 1905), London, 1906, p. 3.
Some reviewers treated my speculations as fanciful, but as I believe that this was due
generally to misapprehension, and as I hold that homologous considerations as to stability
and instability are really applicable to evolution of all sorts, I have thought it well to
return to the subject in the present paper.

35—2
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548 The Genesis of Double Stars

Further than this, I would ask whether the same train of ideas
does not also apply to the evolution of animals ? A species is well
adapted to its environment when the individual can withstand the
shocks of famine or the attacks and competition of other animals ;
it then possesses a high degree of stability. Most of the casual
variations of individuals are indifferent, for they do not tell much
either for or against success in life ; they are small oscillations which
leave the type unchanged. As circumstances change, the stability of
the species may gradually dwindle through the insufficiency of some
definite quality, on which in earlier times no such insistent demands
were made. The individual animals will then tend to fail in the
struggle for life, the numbers will dwindle and extinction may ensue.
But it may be that some new variation, at first of insignificant
importance, may just serve to turn the scale. A new type may be
formed in which the variation in question is preserved and augmented;
its stability may increase and in time a new species may be
produced.

At the risk of condemnation as a wanderer beyond my province
into the region of biological evolution, I would say that this view
accords with what I understand to be the views of some naturalists,
Avho recognise the existence of critical periods in biological history at
which extinction occurs or which form the starting-point for the
formation of new species. Ought we not then to expect that long
periods will elapse during which a type of animal will remain almost
constant, followed by other periods, enormously long no doubt as
measured in the life of man, of acute struggle for existence when the
type will change more rapidly ? This at least is the view suggested
by the theory of stability in the physical universe1.

And now I propose to apply these ideas of stability to the theory
of stellar evolution, and finally to illustrate them by certain recent
observations of a very remarkable character.

Stars and planets are formed of materials Avhich yield to the
enormous forces called into play by gravity and rotation. This is
obviously true if they are gaseous or fluid, and even solid matter
becomes plastic under sufficiently great stresses. Nothing approach-
ing a complete study of the equilibrium of a heterogeneous star has
yet been found possible, and we are driven to consider only bodies
of simpler construction. I shall begin therefore by explaining what
is known about the shapes which may be assumed by a mass of
incompressible liquid of uniform density under the influences of
gravity and of rotation. Such a liquid mass may be regarded as

1 I make no claim to extensive reading on this subject, but refer the reader for example
to a paper by Professor A. A. W. Hubrecht on " l)e Vries's Theory of Mutations," Popular
Science Monthly, July 1904, especially to p. 213.
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The shape of a mass of rotating liquid 549

an ideal star, which resembles a real star in the fact that it is formed
of gravitating and rotating matter, and because its shape results from
the forces to which it is subject. It is unlike a star in that it possesses
the attributes of incompressibility and of uniform density. The
difference between the real and the ideal is doubtless great, yet the
similarity is great enough to allow us to extend many of the con-
clusions as to ideal liquid stars to the conditions which must hold
good in reality. Thus with the object of obtaining some insight into
actuality, it is justifiable to discuss an avowedly ideal problem at
some length.

The attraction of gravity alone tends to make a mass of liquid
assume the shape of a sphere, and the effects of rotation, summarised
under the name of centrifugal force, are such that the liquid seeks
to spread itself outwards from the axis of rotation. It is a singular fact
that it is unnecessary to take any account of the size of the mass
of liquid under consideration, because the shape assumed is
exactly the same whether the mass be small or large, and this
renders the statement of results much easier than would otherwise
be the case.

A mass of liquid at rest will obviously assume the shape of a
sphere, under the influence of gravitation, and it is a stable form,
because any oscillation of the liquid which might be started would
gradually die away under the influence of friction, however small.
If now we impart to the whole mass of liquid a small speed of rota-
tion about some axis, which may be called the polar axis, in such
a way that there are no internal currents and so that it spins in the
same way as if it were solid, the shape will become slightly flattened
like an orange. Although the earth and the other planets are not
homogeneous they behave in the same way, and are flattened at the
poles and protuberant at the equator. This shape may therefore
conveniently be described as planetary.

If the planetary body be slightly deformed the forces of restitution
are slightly less than they were for the sphere; the shape is stable
but somewhat less so than the sphere. We have then a planetary
spheroid, rotating slowly, slightly flattened at the poles, with a high
degree of stability, and possessing a certain amount of rotational
momentum. Let us suppose this ideal liquid star to be somewhere
in stellar space far removed from all other bodies; then it is subject
to no external forces, and any change which ensues must come from
inside. Now the amount of rotational momentum existing in a
system in motion can neither be created nor destroyed by any
internal causes, and therefore, whatever happens, the amount of
rotational momentum possessed by the star must remain absolutely
constant.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511693953.030
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 01:53:28, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511693953.030
https://www.cambridge.org/core


550 The Genesis of Double Stars

A real star radiates heat, and as it cools it shrinks. Let us
suppose then that our ideal star also radiates and shrinks, but let
the process proceed so slowly that any internal currents generated
in the liquid by the cooling are annulled so quickly by fluid friction
as to be insignificant; further let the liquid always remain at
any instant incompressible and homogeneous. All that we are con-
cerned with is that, as time passes, the liquid star shrinks, rotates
in one piece as if it were solid, and remains incompressible and
homogeneous. The condition is of course artificial, but it represents
the actual processes of nature as well as may be, consistently with the
postulated incompressibility and homogeneity1.

The shrinkage of a constant mass of matter involves an increase
of its density, and we have therefore to trace the changes which
supervene as the star shrinks, and as the liquid of which it is com-
posed increases in density. The shrinkage will, in ordinary parlance,
bring the weights nearer to the axis of rotation. Hence in order
to keep up the rotational momentum, which as we have seen must
remain constant, the mass must rotate quicker. The greater speed
of rotation augments the importance of centrifugal force compared
with that of gravity, and as the flattening of the planetary spheroid
was due to centrifugal force, that flattening is increased ; in other
words the ellipticity of the planetary spheroid increases.

As the shrinkage and corresponding increase of density proceed,
the planetary spheroid becomes more and more elliptic, and the
succession of forms constitutes a family classified according to the
density of the liquid. The specific mark of this family is the flatten-
ing or ellipticity.

Now consider the stability of the system. We have seen that
the spheroid with a slow rotation, which forms our starting-point,
was slightly less stable than the sphere, and as we proceed through
the family of ever flatter ellipsoids the stability continues to diminish.
At length when it has assumed the shape shown in Fig. 2, where
the equatorial and polar axes are proportional to the numbers 1000
and 583, the stability has just disappeared. According to the general
principle explained above this is a form of bifurcation, and corre-
sponds to the form denoted A. The specific difference a of this
family must be regarded as the excess of the ellipticity of this figure
above that of all the earlier ones, beginning with the slightly flattened
planetary spheroid. Accordingly the specific difference a of the family
has gradually diminished from the beginning and vanishes at this
stage.

1 Mathematicians are accustomed to regard the density as constant and the rotational
momentum as increasing. But the way of looking at the matter, which I have adopted,
is easier of comprehension, and it comes to the same in the end.
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The planetary figure becomes unstable 551

According to Poincare's principle the vanishing of the stability
serves us with notice that we have reached a figure of bifurcation,
and it becomes necessary to inquire what is the nature of the specific
difference of the new family of figures which must be coalescent with
the old one at this stage. This difference is found to reside in the
fact that the equator, which in the planetary family has hitherto
been circular in section, tends to become elliptic. Hitherto the
rotational momentum has been kept up to its constant value partly
by greater speed of rotation and partly by a symmetrical bulging of
the equator. But now while the speed of rotation still increases1,
the equator tends to bulge outwards at two diametrically opposite
points and to be flattened midway between these protuberances.
The specific difference in the new family, denoted in the general

y 1000

\ \

k /

H /

Fig. 2.

Planetary spheroid just becoming unstable.

sketch by b, is this ellipticity of the equator. If we had traced the
planetary figures with circular equators beyond this stage A, we
should have found them to have become unstable, and the stability
has been shunted off along the A+b family of forms with elliptic
equators.

This new series of figures, generally named after the great
mathematician Jacobi, is at first only just stable, but as the density
increases the stability increases, reaches a maximum and then de-
clines. As this goes on the equator of these Jacobian figures
becomes more and more elliptic, so that the shape is considerably
elongated in a direction at right angles to the axis of rotation.

1 The mathematician familiar with Jacobi's ellipsoid will find that this is correct,
although in the usual mode of exposition, alluded to above in a footnote, the speed
diminishes.
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552 The Genesis of Double Stars

At length when the longest axis of the three has become about
three times as long as the shortest1, the stability of this family of
figures vanishes, and we have reached a new form of bifurcation
and must look for a new type of figure along which the stable
development will presumably extend. Two sections of this critical
Jacobian figure, which is a figure of bifurcation, are shown by the
dotted lines in Fig. 3; the upper figure is the equatorial section at
right angles to the axis of rotation, the lower figure is a section
through the axis.

Now PoincanS has proved that the new type of figure is to be
derived from the figure of bifurcation by causing one of the ends to
be prolonged into a snout and by bluntening the other end. The

Axis

o
A

c o c
Fig. 3.

The " pear-shaped figure " and the Jacobian figure from which it is derived.

snout forms a sort of stalk, and between the stalk and the axis of
rotation the surface is somewhat flattened. These are the character-
istics of a pear, and the figure has therefore been called the "pear-
shaped figure of equilibrium." The firm line in Fig. 3 shows this new
type of figure, whilst, as already explained, the dotted line shows the
form of bifurcation from which it is derived. The specific mark of
this new family is the protrusion of the stalk together with the other
corresponding smaller differences. If we denote this difference by c,
while A+b denotes the Jacobian figure of bifurcation from which
it is derived, the new family may be called A+b + c, and c is zero
initially. According to my calculations this series of figures is stable2,

1 The three axes of the ellipsoid are then proportional to 1000, 432, 343.
2 M. Liapounoff contends that for constant density the new series of figures, which

M. Poincare1 discovered, has less rotational momentum than that of the figure of bifurca-
tion. If he is correct, the figure of bifurcation is a limit of stable figures, and none can
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The pear-shaped figure 553

but I do not know at what stage of its development it becomes
unstable.

Professor Jeans has solved a problem which is of interest
as throwing light on the future development of the pear-shaped
figure, although it is of a still more ideal character than the one
which has been discussed. He imagines an infinitely long circular
cylinder of liquid to be in rotation about its central axis. The
existence is virtually postulated of a demon who is always occupied
in keeping the axis of the cylinder straight, so that Jeans has only
to concern himself with the stability of the form of the section of
the cylinder, which as I have said is a circle with the axis of rotation
at the centre. He then supposes the liquid forming the cylinder to
shrink in diameter, just as we have done, and finds that the speed of
rotation must increase so as to keep up the constancy of the rotational
momentum. The circularity of section is at first stable, but as the
shrinkage proceeds the stability diminishes and at length vanishes.
This stage in the process is a form of bifurcation, and the stability
passes over to a new series consisting of cylinders which are
elliptic in section. The circular cylinders are exactly analogous with
our planetary spheroids, and the elliptic ones with the Jacobian
ellipsoids.

Fig. 4.

Section of a rotating cylinder of liquid.

With further shrinkage the elliptic cylinders become unstable,
a new form of bifurcation is reached, and the stability passes over
to a series of cylinders whose section is pear-shaped. Thus far the
analogy is complete between our problem and Jeans's, and in con-
sequence of the greater simplicity of the conditions, he is able to
carry his investigation further. He finds that the stalk end of the
pear-like section continues to protrude more and more, and the
flattening between it and the axis of rotation becomes a constriction.
Finally the neck breaks and a satellite cylinder is born. Jeans's
figure for an advanced stage of development is shown in Fig. 4, but

exiat with stability for greater rotational momentum. My own work seems to indicate
that the opposite is true, and, notwithstanding M. Liapounoffs deservedly great authority,
I venture to state the conclusions in accordance with my own work.
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554 The Genesis of Double Stars

his calculations do not enable him actually to draw the state of affairs
after the rupture of the neck.

There are certain difficulties in admitting the exact parallelism
between this problem and ours, and thus the final development of
our pear-shaped figure and the end of its stability in a form of
bifurcation remain hidden from our view, but the successive changes
as far as they have been definitely traced are very suggestive in the
study of stellar evolution.

Attempts have been made to attack this problem from the other
end. If we begin with a liquid satellite revolving about a liquid
planet and proceed backwards in time, we must make the two masses
expand so that their density will be diminished. Various figures
have been drawn exhibiting the shapes of two masses until their
surfaces approach close to one another and even until they just
coalesce, but the discussion of their stability is not easy. At present
it would seem to be impossible to reach coalescence by any series of
stable transformations, and if this is so Professor Jeans's investigation
has ceased to be truly analogous to our problem at some undeter-
mined stage. However this may be this line of research throws an
instructive light on what we may expect to find in the evolution of
real stellar systems.

In the second part of this paper I shall point out the bearing
which this investigation of the evolution of an ideal liquid star may
have on the genesis of double stars.

II.

There are in the heavens many stars which shine with a variable
brilliancy. Amongst these there is a class which exhibits special
peculiarities ; the members of this class are generally known as Algol
Variables, because the variability of the star /3 Persei or Algol was the
first of such cases to attract the attention of astronomers, and because
it is perhaps still the most remarkable of the whole class. But the
circumstances which led to this discovery were so extraordinary that
it seems worth while to pause a moment before entering on the
subject.

John Goodricke, a deaf-mute, was born in 1764 ; he was grandson
and heir of Sir John Goodricke of Ribston Hall, Yorkshire. In
November 1782, he noted that the brilliancy of Algol waxed and
waned1, and devoted himself to observing it on every fine night from
the 28th December 1782 to the 12th May 1783. He communicated

1 It is said that Georg Palitzch, a farmer of Prohlis near Dresden, had about 1758
already, noted the variability of Algol with the naked eye. Journ. Brit. Astron. Assoc.
Vol. xv. (1904—5), p. 203.
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Variable Stars 555

his observations to the Royal Society, and suggested that the variation
in brilliancy was due to periodic eclipses by a dark companion star,
a theory now universally accepted as correct. The Royal Society
recognised the importance of the discovery by awarding to Goodricke,
then only 19 years of age, their highest honour, the Copley medal.
His later observations of /3 Lyrae and of 8 Cephei were almost as
remarkable as those of Algol, but unfortunately a career of such
extraordinary promise was cut short by death, only a fortnight after
his election to the Royal Society1.

It was not until 1889 that Goodricke's theory was verified, when
it was proved by Vogel that the star was moving in an orbit, and
in such a manner that it was only possible to explain the rise and
fall in the luminosity by the partial eclipse of a bright star by a
dark companion.

The whole mass of the system of Algol is found to be half as
great again as that of our sun, yet the two bodies complete their
orbit in the short period of 2d 20h 48m 55s. The light remains
constant during each period, except for 9h 20™ when it exhibits a
considerable fall in brightness2; the curve which represents the
variation in the light is shown in Fig. 7 below.

The spectroscope has enabled astronomers to prove that many
stars, although apparently single, really consist of two stars circling
around one another3; they are known as spectroscopic binaries.
Campbell of the Lick Observatory believes that about one star in six
is a binary4; thus there must be many thousand such stars within
the reach of our spectroscopes.

The orientation of the planes of the orbits of binary stars appears to
be quite arbitrary, and in general the star does not vary in brightness.
Amongst all such orbits there must be some whose planes pass nearly
through the sun, and in these cases the eclipse of one of the stars by
the other becomes inevitable, and in each circuit there will occur two
eclipses of unequal intensities.

It is easy to see that in the majority of such cases the two com-
ponents must move very close to one another.

1 Diet, of National Biography; article Goodricke (John). The article is by Miss Agnes
Clerke. It is strange that she did not then seem to be aware that he was a deaf-mute,
but she notes the fact in her Problems of Astrophysics, p. 337, London, 1903.

'2 Clerke, Problems of Astrophysics, p. 302 and oh. XYIII.
3 If a source of light is approaching with a great velocity the waves of light are

crowded together, and conversely they are spaced out when the source is receding. Thus
motion in the line of sight virtually produces an infinitesimal change of colour. The
position of certain daik lines in the spectrum affords an exceedingly accurate measurement
of colour. Thus displacements of these spectral lines enables us to measure the velocity
of the source of light towards or away from the observer.

4 Astropliysical Journ. Vol. xni. p. 89, 1901. See also A. Eoberts, Nattire, Sept. 12,
1901, p. 468.
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556 The Genesis of Double Stars

The coincidence between the spectroscopic and the photometric
evidence permits us to feel complete confidence in the theory of
eclipses. When then we find a star with a light-curve of perfect
regularity and with the characteristics of that of Algol, we are justified
in extending the theory of eclipses to it, although it may be too
faint to permit of adequate spectroscopic examination. This extension
of the theory secures a considerable multiplication of the examples
available for observation, and some 30 have already been discovered.

Dr Alexander Roberts, of Lovedale in Cape Colony, truly remarks
that the study of Algol variables " brings us to the very threshold of
the question of stellar evolution1." It is on this account that I
propose to explain in some detail the conclusion to which he and some
other observers have been led.

Although these variable stars are mere points of light, it has
been proved by means of the spectroscope that the law of gravitation
holds good in the remotest regions of stellar space, and further it
seems now to have become possible even to examine the shapes of
stars by indirect methods, and thus to begin the study of their
evolution. The chain of reasoning which I shall explain must of
necessity be open to criticism, yet the explanation of the facts by
the theory is so perfect that it is not easy to resist the conviction that
we are travelling along the path of truth.

The brightness of a star is specified by what is called its " magni-
tude." The average brightness of all the stars which can just be seen
with the naked eye defines the sixth magnitude. A star which only gives
two-fifths as much light is said to be of the seventh magnitude; while
one which gives 2J times as much light is of the fifth magnitude, and
successive multiplications or divisions by 2 | define the lower or higher
magnitudes. Negative magnitudes have clearly to be contemplated ;
thus Sirius is of magnitude — 1*4, and the sun is of magnitude — 26.

The definition of magnitude is also extended to fractions ; for
example, the lights given by two candles which are placed at 100 ft.
and 100 ft. 6 in. from the observer differ in brightness by one-
hundredth of a magnitude.

A great deal of thought has been devoted to the measurement of
the brightness of stars, but I will only describe one of the methods used,
that of the great astronomer Argelander. In the neighbourhood of the
star under observation some half dozen standard stars are selected of
known invariable magnitudes, some being brighter and some fainter
than the star to be measured; so that these stars afford a visible scale
of brightness. Suppose we number them in order of increasing bright-
ness from 1 to 6; then the observer estimates that on a given night
his star falls between stars 2 and 3, on the next night, say between

1 Proc. Roy. Soc. Edinburgh, xxiv. Pt. n. (1902), p. 73.
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The light-curve of a variable star 557

3 and 4, and then again perhaps it may return to between 2 and 3,
and so forth. With practice he learns to evaluate the brightness down
to small fractions of a magnitude, even a hundredth part of a
magnitude is not quite negligible.

For example, in observing the star RIt Centauri five stars were in
general used for comparison by Dr Roberts, and in course of three
months he secured thereby 300 complete observations. When the
period of the cycle had been ascertained exactly, these 300 values
were reduced to mean values which appertained to certain mean
places in the cycle, and a mean light-curve was obtained in this way.
Examples of light curves will be found in Figs, a and 7 below.
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Fig. 5.

Light curve of EB Centauri.

I shall now follow out the results of the observation of RR
Centauri not only because it affords the easiest way of explaining
these investigations, but also because it is one of the stars which
furnishes the most striking results in connection with the object
of this essay1. This star has a mean magnitude of about 7\, and it is
therefore invisible to the naked eye. Its period of variability is
14h 32m 10876, the last refinement of precision being of course only
attained in the final stages of reduction. Twenty-nine mean values of
the magnitude were determined, and they were nearly equally spaced
over the whole cycle of changes. The black dots in Fig. 5 exhibit the
mean values determined by Dr Roberts. The last three dots on the
extreme right are merely the same as the first three on the extreme
left, and are repeated to show how the next cycle would begin. The

1 See Monthly Notices Ii.A.S. Vol. 63, 1903, p. 527.
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558 The Genesis of Double Stars

smooth dotted curve will be explained hereafter, but, by reference
to the scale of magnitudes on the margins of the figure, it may
be used to note that the dots might be brought into a perfectly
smooth curve by shifting some few of the dots by about a hundredth
of a magnitude.

This light-curve presents those characteristics which are due
to successive eclipses, but the exact form of the curve must depend
on the nature of the two mutually eclipsing stars. If we are to inter-
pret the curve with all possible completeness, it is necessary to make
certain assumptions as to the stars. It is assumed then that the
stars are equally bright all over their disks, and secondly that they
are not surrounded by an extensive absorptive atmosphere. This last
appears to me to be the most dangerous assumption involved in the
whole theory.

Making these assumptions, however, it is found that if each of the
eclipsing stars were spherical it would not be possible to generate

Fig. G.

The shape of the star BB Centauri.

such a curve with the closest accuracy. The two stars are certainly
close together, and it is obvious that in such a case the tidal forces
exercised by each on the other must be such as to elongate the figure
of each towards the other. Accordingly it is reasonable to adopt the
hypothesis that the system consists of a pair of elongated ellipsoids,
with their longest axes pointed towards one another. No supposition
is adopted a priori as to the ratio of the two masses, or as to their
relative size or brightness, and the orbit may have any degree of
eccentricity. These last are all to be determined from the nature
of the light-curve.

In the case of RR Centauri, however, Dr Roberts finds the
conditions are best satisfied by supposing the orbit to be circular,
and the sizes and masses of the components to be equal, while their
luminosities are to one another in the ratio of 4 to 3. As to their
shapes he finds them to be so much elongated that they overlap,
as exhibited in his figure now reproduced as Fig. (5. The dotted curve
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Determination of the shape of a double star 559

shows a form of equilibrium of rotating liquid as computed by me
some years before, and it was added for the sake of comparison.

On turning back to Fig. 5 the reader will see in the smooth dotted
curve the light variation which would be exhibited by such a binary
system as this. The curve is the result of computation and it is
impossible not to be struck by the closeness of the coincidence with
the series of black dots which denote the observations.

It is virtually certain that RR Centauri is a case of an eclipsing
binary system, and that the two stars are close together. It is not of
course proved that the figures of the stars are ellipsoids, but gravita-
tion must deform them into a pair of elongated bodies, and, on the
assumptions that they are not enveloped in an absorptive atmosphere
and that they are ellipsoidal, their shapes must be as shown in the
figure.

This light-curve gives an excellent illustration of what we have
reason to believe to be a stage in the evolution of stars, when a single
star is proceeding to separate into a binary one.

As the star is faint, there is as yet no direct spectroscopic evidence
of orbital motion. Let us turn therefore to the case of another star,
namely V Puppis, in which such evidence does already exist. I give
an account of it, because it presents a peculiarly interesting confirma-
tion of the correctness of the theory.

In 1895 Pickering announced in the Harvard Circular No. 14
that the spectroscopic observations at Arequipa proved V Puppis
to be a double star with a period of 3d 2h 46m. Now when Roberts
discussed its light-curve he found that the period was la 10h 54m 27s,
and on account of this serious discrepancy he effected the reduction
only on the simple assumption that the two stars were spherical, and
thus obtained a fairly good representation of the light-curve. It
appeared that the orbit was circular and that the two spheres
were not quite in contact. Obviously if the stars had been assumed
to be ellipsoids they would have been found to overlap, as was the
case for RR Centauri1. The matter rested thus for some months
until the spectroscopic evidence was re-examined by Miss Cannon
on behalf of Professor Pickering, and we find in the notes on
p. 177 of Vol. XXVIII. of the Annals of the Harvard Observatory
the following : " A.G.C. 10534. This star, which is the Algol variable,
V Puppis, has been found to be a spectroscopic binary. The
period la-454 (i.e. ld 10h 54m) satisfies the observations of the
changes in light, and of the varying separation of the lines of the
spectrum. The spectrum has been examined on 61 plates, on 23
of which the lines are double." Thus we have valuable evidence
in confirmation of the correctness of the conclusions drawn from the

1 Astropliysical Journ. Vol. xm. (1901), p. 177.
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560 The Genesis of Double Stars

light-curve. In the circumstances, however, I have not thought it
worth while to reproduce l)r Roberts's provisional figure.

I now turn to the conclusions drawn a few years previously by
another observer, where we shall find the component stars not quite
in contact. This is the star (3 Lyrae which was observed by Goodricke,

Argelander's Curve

Computed Curve.

Fig. 7.

The light-curve and system of (3 Lyrae.

Argelander, Belopolsky, Schur, Markwick and by many others. The
spectroscopic method has been successfully applied in this case, and
the component stars are proved to move in an orbit about one another.
In 1897, Mr G. W. Myers applied the theory of eclipses to the light-
curve, on the hypothesis that the stars are elongated ellipsoids, and
he obtained the interesting results exhibited in Fig. 71.

1 Astrophysical Journ. Vol. vn. (1898), p. 1.
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The density of double-star systems 561

The period of /3 Lyrae is relatively long, being 12'! 21h 47™, the
orbit is sensibly eccentric, and the two spheroids are not so much
elongated as was the case with RR Centauri. The mass of the system
is enormous, one of the two stars being 10 times and the other
21 times as heavy as our sun.

Further illustrations of this subject might be given, but enough
has been said to explain the nature of the conclusions which have
been drawn from this class of observation.

In my account of these remarkable systems the consideration of
one very important conclusion has been purposely deferred. Since
the light-curve is explicable by eclipses, it follows that the sizes of
the two stars are determinable relatively to the distance between
them. The period of their orbital motion is known, being identical
with the complete period of the variability of their light, and an easy
application of Kepler's law of periodic times enables us to compute
the sum of the masses of the two stars divided by the cube of the
distance between their centres. Now the sizes of the bodies being
known, the mean density of the whole system may be calculated. In
every case that density has been found to be much less than the sun's,
and indeed the average of a number of mean densities which have
been determined only amounts to one-eighth of that of the sun.
In some cases the density is extremely small, and in no case is it
quite so great as half the solar density.

It would be absurd to suppose that these stars can be uniform in
density throughout, and from all that is known of celestial bodies it
is probable that they are gaseous in their external parts with great
condensation towards their centres. This conclusion is confirmed by
arguments drawn from the theory of rotating masses of liquid1.

Although, as already explained, a good deal is known about the
shapes and the stability of figures consisting of homogeneous incom-
pressible liquid in rotation, yet comparatively little has hitherto been
discovered about the equilibrium of rotating gaseous stars. The figures
calculated for homogeneous liquid can obviously only be taken to
afford a general indication of the kind of figure which we might
expect to find in the stellar universe. Thus the dotted curve in
Fig. 5, which exhibits one of the figures which I calculated, has
some interest when placed alongside the figures of the stars in
RR Centauri, as computed from the observations, but it must not be
accepted as the calculated form of such a system. I have more-
over proved more recently that such a figure of homogeneous liquid
is unstable. Notwithstanding this instability it does not necessarily

1 See J. H. Jeans, "On the density of Algol variables," Astrophysical Journ. Vol. xxn.
(1905), p. 97.

D. 36
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562 The Genesis of Double Stars

follow that the analogous figure for compressible fluid is also un-
stable, as will be pointed out more fully hereafter.

Professor Jeans has discussed in a paper of great ability the
difficult problems offered by the conditions of equilibrium and of
stability of a spherical nebula1. In a later paper2, in contrasting
the conditions which must govern the fission of a star into two parts
when the star is gaseous and compressible with the corresponding
conditions in the case of incompressible liquid, he points out that for
a gaseous star "the agency which effects the separation will no
longer be rotation alone ; gravitation also will tend towards separa-
tion From numerical results obtained in the various papers of my
own,...I have been led to the conclusion that a gravitational
instability of the kind described must be regarded as the primary
agent at work in the actual evolution of the universe, Laplace's
rotation playing only the secondary part of separating the primary
and satellite after the birth of the satellite."

It is desirable to add a word in explanation of the expression
" gravitational instability" in this passage. It means that when
the concentration of a gaseous nebula (without rotation) has pro-
ceeded to a certain stage, the arrangement in spherical layers of
equal density becomes unstable, and a form of bifurcation has been
reached. For further concentration concentric spherical layers
become unstable, and the new stable form involves a concentration
about two centres. The first sign of this change is that the spherical
layers cease to be quite concentric and then the layers of equal
density begin to assume a somewhat pear-shaped form analogous
to that which we found to occur under rotation for an incompressible
liquid. Accordingly it appears that while a sphere of liquid is stable
a sphere of gas may become unstable. Thus the conditions of stability
are different in these two simple cases, and it is likely that while
certain forms of rotating liquid are unstable the analogous forms for
gas may be stable. This furnishes a reason why it is worth while to
consider the unstable forms of rotating liquid.

There can I think be little doubt but that Jeans is right in
looking to gravitational instability as the primary cause of fission,
but when we consider that a binary system, with a mass larger than
the sun's, is found to rotate in a few hours, there seems reason to look
to rotation as a contributory cause scarcely less important than the
primary one.

With the present extent of our knowledge it is only possible to
reconstruct the processes of the evolution of stars by means of

1 Phil. Trans. R.8. Vol. cxcix. A (1902), p. 1. See also A. lioberts, S. African Assoc.
Adv. Sci. Vol. i. (1903), p. 6.

2 Astrnphysical Journ. Vol. xxn. (1905), p. 97.
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Sketch of the process of evolution 563

inferences drawn from several sources. We have first to rely on the
general principles of stability, according to which we are to look for
a series of families of forms, each terminating in an unstable form,
which itself becomes the starting-point of the next family of stable
forms. Secondly we have as a guide the analogy of the successive
changes in the evolution of ideal liquid stars ; and thirdly we
already possess some slender knowledge as to the equilibrium of
gaseous stars.

From these data it is possible to build up in outline the probable
history of binary stars. Originally the star must have been single,
it must have been widely diffused, and must have been endowed with
a slow rotation. In this condition the strata of equal density must
have been of the planetary form. As it cooled and contracted the
symmetry round the axis of rotation must have become unstable,
through the effects of gravitation, assisted perhaps by the increasing
speed of rotation1. The strata of equal density must then become
somewhat pear-shaped, and afterwards like an hour-glass, with the
constriction more pronounced in the internal than in the external
strata. The constrictions of the successive strata then begin to rupture
from the inside progressively outwards, and when at length all are
ruptured we have the twin stars portrayed by Roberts and by
others.

As we have seen, the study of the forms of equilibrium of rotating
liquid is almost complete, and Jeans has made a good beginning in the
investigation of the equilibrium of gaseous stars, but much more
remains to be discovered. The field for the mathematician is a wide
one, and in proportion as the very arduous exploration of that field
is attained so will our knowledge of the processes of cosmical
evolution increase.

From the point of view of observation, improved methods in the
use of the spectroscope and increase of accuracy in photometry will
certainly lead to a great increase in our knowledge within the next
few years. Probably the observational advance will be more rapid
than that of theory, for we know how extraordinary has been the
success attained within the last few years, and the theory is one
of extreme difficulty ; but the two ought to proceed together hand
in hand. Human life is too short to permit us to watch the leisurely
procedure of cosmical evolution, but the celestial museum contains
so many exhibits that it may become possible, by the aid of theory,
to piece together bit by bit the processes through which stars pass in
the course of their evolution.

1 I learn from Professor Jeans that he now (December 1908) believes that he can
prove that some small amount of rotation is necessary to induce instability in the sym-
metrical arrangement.
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564 The Genesis of Double Stars

In the sketch which I have endeavoured to give of this fascinating
subject, I have led my reader to the very confines of our present
knowledge. It is not much more than a quarter of a century since
this class of observation has claimed the close attention of astrono-
mers ; something considerable has been discovered already and there
seems scarcely a discernible limit to what will be known in this field
a century from now. Some of the results which I have set forth may
then be shown to be false, but it seems profoundly improbable that
we are being led astray by a Will-of-the-Wisp.
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